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LOVD: Land Vehicle Detection in Complex Scenes
of Optical Remote Sensing Image
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Abstract— Nowadays, there is a growing body of research
about object detection in remote sensing data. However, the
detection algorithms for small targets in remote sensing areas
are inadequate, largely because of the unavailability of high-
quality datasets. Most remote sensing datasets are comprehensive,
which means that they include bridges, airplanes, and lots of
other common categories. Compared with other categories, the
number and diversity of weak objects, such as vehicles, are
quite insufficient. These limitations greatly affect the detection of
small targets in remote sensing images. In order to promote the
development of algorithms for the detection of small targets in
remote sensing images and also allow access to remote sensing
data, we have established a large-scale dataset for the detection
of vehicle targets in optical remote sensing images and called it
LOVD. It contains 1196 pictures and 541 751 instances, covering
13 categories. For the dataset, we have proposed in this article:
1) it is the largest one in terms of vehicle category and the
total number of vehicle instances; 2) it contains images with
various backgrounds in different weather and scenarios; and
3) all targets are marked by oriented bounding boxes (OBBs),
and two label formats are provided. Finally, we test the state-
of-the-art detection algorithms on our dataset and provide a
benchmark for OBB detection.

Index Terms— Dataset, remote sensing, vehicle detection.

I. INTRODUCTION

TODAY, with the continuous development of sensors in
the aerospace field and the continuous improvement

of machine vision algorithms, processing of remote sensing
images has gradually focused on the fields of city monitoring
[1]–[3], land surveying (including resource exploration and
agriculture application) [4]–[12], and environmental-climate
monitoring [13]–[18]. Applications in these fields cover
remote sensing images’ classification [19]–[22], segmentation
[23]–[29], object detection [30], [31], and so on.

Considering the lack of application of remote sensing data
in land transportation, we have established a remote sensing
dataset for vehicle detection to assist research on smart city
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transportation. Our dataset mainly uses aviation equipment to
perform optical imaging of various types and sizes of vehicles
in different weather conditions. The shooting scenes include
cities, villages, lakes, and so on. Since the proposed dataset is a
large-scale optical remote sensing dataset for vehicle detection,
we refer to it as LOVD. Our dataset mainly makes up for the
following neglected aspects of existing general remote sensing
datasets.

1) Although some remote sensing datasets have brought
great benefits [32], studies of datasets for the detection
of small objects in remote sensing images have been
ignored, especially those designed to detect fuzzy and
tiny targets (such as cars). The number of such remote
sensing datasets is still insufficient.

2) The diversity of scenes in most public vehicle datasets
is relatively poor. Most existing vehicle datasets are
concentrated on urban roads with a simple background,
which easily leads to overfitting and the phenomenon of
the case-specific detection algorithm.

3) All existing datasets adopt a rough classification of
vehicle types. Most of them are divided into “large
vehicles” and “small vehicles” according to their size.
However, this classification method is no longer feasible
since vehicles of the same size actually have different
everyday applications. Therefore, there is a need for a
more detailed classification.

4) Furthermore, horizontal bounding boxes (HBBs) are
common in existing remote sensing datasets. Only a few
datasets have oriented bounding box (OBB) annotations.
We found that HBB cannot effectively describe the
boundaries of small targets with large aspect ratios and
in dense situations. Thus, it is necessary to apply OBB
annotations in our dataset.

Large high-quality datasets can greatly improve data-driven
algorithms, but the method of obtaining remote sensing data
can be quite complicated. Consequently, the proposed dataset
also considers the method of obtaining remote sensing data.
Most remote sensing datasets are collected in the following
ways: 1) images photographed by satellites; 2) data derived
from various open-source remote sensing maps, such as
Google Earth; and 3) images captured by drones, planes, and
high-altitude balloons.

Each of the three methods outlined above has its pros and
cons. Most remote sensing datasets adopt the first two meth-
ods. However, in those cases, it is very hard to collect pictures
with different scenarios, such as rain or fog. Therefore, for
our dataset, we adopted the third method, which involves
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documenting and taking photographs of different places by
different aerial photography equipment, such as drones and
helicopters. In order to obtain remote sensing data of multiple
scenes and multiple weather conditions as much as possible,
our team took about 1200 aerial images of multiple regions in
China under different weather conditions. The size of all aerial
images is 5280 × 3956 pixels. The dataset contains images
of vehicles with different scales and orientations. All images
have been identified, classified, and annotated carefully.

Compared with other remote sensing datasets for vehicle
detection, our dataset has the following advantages.

1) The number of vehicle categories and the number of
instances are the largest so far.

2) The scenes have great diversity. Its background covers
cities, towns, rural areas, lakes, and other different terrain
backgrounds. It also contains images taken in different weather
conditions.

3) Our dataset adopts OBBs to label vehicles. OBB lays
the foundation for vehicle detection and direction detection
in a dense scenario, which is beneficial for the training of
detection algorithms in large-scale vehicle scenarios, such as
parking lots and urban arterial roads. Our main contributions
can be summarized as follows.

1) Creating a large-scale vehicle benchmark dataset. This
article proposes a large-scale, publicly available dataset
for vehicle detection in optical remote sensing images.
As far as we know, the proposed dataset has attained the
largest scale in both vehicle categories and the number of
instances. It allows for the verification and development
of data-driven object detection algorithms.

2) Performance benchmarking on the proposed dataset;
training and testing popular existing object detection
algorithms on our dataset to determine their performance
level.

II. RELATED WORK

After investigation and analysis, it is found that there
are currently two mainstream research directions for objects
detection in the remote sensing area: one is to improve the
quality and size of the dataset; the other is to optimize the
detection algorithms.

A. Data

At present, some researchers are interested in establish-
ing remote sensing datasets, and many datasets for objects
detection have been proposed. Moreover, compared with the
detection of large targets, such as playgrounds and airplanes,
research on the detection of smaller targets, such as vehicles,
is still inadequate. Since datasets now play an important role
in data-driven research, a large amount of data would help
in the detection of small and fuzzy targets. First, we will
introduce remote sensing datasets that contain vehicles. The
corresponding information is shown in Table I.

Raytheon et al. developed the OIRDS dataset in 2009, which
contains about 1000 annotated images and 1800 vehicles.
However, since the dataset is quite old, it was not tested

with other algorithms. The number of instances is also rel-
atively small [33]. Gong Cheng created the VHR-10 dataset,
which comprised a collection of 800 images for the detection
of 12 different types of objects [34], and Kang Liu published
the DLR 3K Vehicle dataset in 2015. Both of these datasets are
still small scale in nature [35]. In addition, in 2015, VEDAI
and UCAS-AOD datasets were published. VEDAI artificially
selected 1210 pictures from the Utah AGRC satellite library,
which covered nine categories. However, in order to simplify
the problem, the author excluded scenes with dense vehicles
(such as parking lots) and scenes shot at oblique angles and
mainly focused on relatively independent vehicle distribution
and simple background image scenes [36]. Thus, this dataset
is not suitable for vehicle detection training in urban sce-
narios, which is much more complicated. The UCAS-AOD
dataset [37] collects images from Google Earth. It includes
two types of targets: vehicles and airplanes. Among them,
there are 2819 vehicles (310 pictures) and 3210 airplanes
(600 pictures). The number of targets in the database is still
too small, and the target category is largely single. Gradually,
other larger datasets have been developed. COWC [38] and
ITCVD [39] have a similar number of instances, but the former
uses the center point as labels, and the latter uses HBBs.
DOTA [32] and DIOR (2018) [31] datasets are also large and
comprehensive remote sensing datasets. However, they only
have one or two types of vehicles and contain many pictures
without vehicles. None of them can meet the requirements of
land vehicle detection. Gao et al. [40] established the RSOC
dataset specifically for target counting in remote sensing
images. The targets are divided into four categories: buildings,
large vehicles, small vehicles, and ships. Although the dataset
has a large number of vehicles, the total number of images is
small, its annotation information is not sufficiently detailed,
and it is not a public dataset. After doing a thorough survey,
it is found that an excellent remote sensing dataset needs to
have the following attributes.

1) Effective Objects and Correct Annotations: Some
instances might be difficult to identify due to low reso-
lution or being obscured by obstacles, such as trees and
buildings. If such an object is not correctly labeled or
classified, it will greatly affect the training performance
of the algorithm. Therefore, effective screening of data
is an important requirement for remote sensing datasets.

2) Diverse Scene: A high-level remote sensing dataset
of vehicles should focus not just on arterial roads or
parking lots, which have relatively simple backgrounds;
rather, it should include scenes with more diverse
backgrounds. Likewise, data collected under different
weather conditions are also crucial since sunny days and
other weather conditions usually affect the imaging of
objects. If not, the dataset will have poor versatility espe-
cially for those scenes with complicated backgrounds.
Thus, a high-quality remote sensing dataset should have
diverse scenarios.

3) Detailed Classification: Both the size and application
of vehicles should be taken into consideration as a
classification standard. A vehicle remote sensing dataset
should be classified according to the type, size, and
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TABLE I

COMPARISON WITH OTHER DATASETS

purpose of vehicles, and the classification should be as
detailed as possible.

4) A large number of instances for each category. The
amount of data determines the performance of an algo-
rithm to a great extent. It is worth noting that what
matters is not just the total amount of data but also the
quantity and quality of data within each category.

As has been discussed above, there is currently no public
dataset, which meets the requirements of future research
for training vehicle detection algorithms on remote sensing
images. Therefore, the proposed dataset will be extremely
significant for research on the detection of small and blurred
targets, such as vehicles, on remote sensing images.

B. Algorithms
Nowadays, most remote sensing target detection algorithms

are based on neural networks originating from target detection
algorithms for natural images. Target-based detection can be
divided into two categories: “two-stage detection” and “one-
stage detection.” The former defines the detection bounding
box as a screening process, while the latter defines it as an
“end-to-end one-time completion” event. Furthermore, target
detection algorithms based on deep learning are started from
the two-stage RCNN. It first extracts a set of object candidate
bounding boxes through selective search and then rescaled
and input them to a CNN model trained on ImageNet to
extract features. Finally, the linear SVM classifier is used
to predict the target in each region and identify the target
category. However, it brings the problem of low detection
speed. To solve the problem of speed, Ren et al. proposed
the Faster R-CNN detector in 2017. The main contribution
of Faster R-CNN was the introduction of a region proposal
network (RPN), which makes an almost cost-free region
proposal possible. By transiting from RCNN to Faster RCNN,
most of the independent blocks in a target detection system,
such as proposal detection, feature extraction, and bounding
box regression, have been gradually integrated into a unified
end-to-end learning framework. In 2017, T.-Y. Lin et al.
proposed a feature pyramid network (FPN) based on Faster
RCNN [41]. Before the development of FPN, most detectors
based on deep learning only performed detection at the top
layer of the network. Although the deeper features of CNN

are conducive for classification and detection, they are not
conducive for object positioning. To this end, a top-down
architecture design with horizontal connections was developed
to build high-level semantics at all levels. Since CNN naturally
forms a feature pyramid through its forward propagation, FPN
has shown great progress in detecting targets of various scales.
The development of FPN greatly improved the detection of
remote sensing targets.

You only look once (YOLO) was proposed by
Redmon et al. [42] in 2016. It is the first single-stage
detector based on deep learning, and it is quite fast. As can
be seen from its name, the author completely abandoned
the previous “proposal detection + verification” detection
paradigm. Instead, YOLO follows a completely different
scheme: applying a single neural network to the entire image.
The network divides the image into multiple regions and
predicts the bounding box and probability of each region,
concurrently. Later, R. Joseph made a series of improvements
on the basis of YOLO, which further improved detection
accuracy while maintaining a high detection speed.

Compared with the two-stage detector, YOLO’s detection
speed has been greatly improved, but its positioning accuracy
has declined, particularly for some small targets. The follow-
up version of YOLO and the SSD proposed by Liu et al. in
2016 [43] pays more attention to this problem. This was the
second single-stage detector in the deep learning era. The main
contribution of SSD was the introduction of multireference and
multiresolution detection technology, which greatly improved
the detection accuracy of a single-stage detector, especially
for some small targets. SSD has advantages in detection speed
and accuracy, and the fast version runs at 59 fps. The main
difference between SSD and any previous detector is that the
former detects objects of different scales at different layers of
the network, while the latter only performs detection on the
top layer. Therefore, compared with YOLOv3, SSD is better
at remote sensing data detection though the effect is slightly
weaker.

Also, in the field of remote sensing, there are also many
specific detection and classification algorithms that have been
proposed. Zou et al. [44] applied deep learning to the classifi-
cation of remote sensing images and proposed a modified DBN
network. In 2016, Cheng et al. proposed a method to learn
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a rotation-invariant CNN (RICNN) detection model, which
introduced a new objective function and achieve great per-
formance improvement in detection of remote sensing images
[45]. In 2017, Sharma et al. [46] proposed a deep patch-based
CNN system for the classification in the remote sensing image.
In 2018, Cheng et al. [47] proposed a method for D-CNN
classification model training by imposing a metric learning
regularization. They made great progress on the classification
of remote sensing images. In 2021, Cheng et al. [48] raised
FENet for object detection in remote sensing images by
applying two feature enhancement modules.

However, most of the abovementioned mainstream algo-
rithms use HBB detection, and target detection algorithms
using OBBs are still rare. This is because it is very difficult to
locate and separate multiangle objects from the background
accurately and quickly. Due to the complexity of remote
sensing image scenes and a large number of small, messy and
oriented targets, two-stage rotated target detectors, such as ROI
transformer and SCRDet, are still the most robust choice.

In 2018, Ding and others proposed RoI (Region of Interest)
Transformer [49]. The core idea of the RoI transformer is to
apply the spatial transformation on RoIs, with the parameters
of spatial transformation being learned under the supervision
of OBB labels. An RoI transformer is lightweight and can
be easily embedded in various rotating target detectors; thus,
it is more suitable for transfer learning. In addition, in 2019,
Xue Yang and others proposed SCRDet. SCRDet is optimized
in terms of small targets, dense arrangement, and arbitrary
rotation angles. For small targets: a feature fusion structure
is designed from the perspective of feature fusion and anchor
sampling. For the dense arrangement problem, a supervised
multidimensional attention network is designed to reduce
the adverse effects of background noise. For any direction
problem: an improved smooth L1 loss is designed by adding
an IoU constant factor, which is specifically used to solve the
boundary problem of OBB regression.

Today, the best target detection algorithm based on OBB
is the R3det dataset proposed by Yang et al. [50] in 2019.
They designed a feature refinement module that can obtain
more accurate features to improve the detection performance
of rotating targets. The key idea of the feature refinement
module is to reencode the position information of the cur-
rent refined bounding box into corresponding feature points
through feature interpolation to achieve feature reconstruction
and alignment. In 2020, Yang and others proposed the CSL
method [51]. In the article, they argued that popular existing
regression-based angle prediction methods have more or fewer
boundary problems. One of the main reasons is that the ideal
prediction results exceed ours. The defined range leads to a
larger loss value. Therefore, CSL eliminates this problem by
converting the angle regression problem into a classification
problem and restricting the range of the prediction results.
Although these algorithms can identify remote sensing tar-
gets better, they still suffer from problems such as extreme
imbalance between classes in the dataset or too many angle
categories in the joystick target, which weakens the detection
effect.

Fig. 1. Similar vehicles from our database.

After investigating the dataset and algorithm separately, it is
found that those algorithms are designed based on existing
comprehensive datasets, so they cannot effectively solve the
problem of identifying weak and small targets, such as vehi-
cles, in remote sensing data. Therefore, in order to solve this
problem, we propose the LOVD dataset, whose advantages are
given as follows.

1) More Vehicle Categories: We take vehicles’ application
and types as the main classification criteria for vehicles,
which mainly includes public transportation, private
cars, construction vehicles, and trucks. On the basis of
these four categories, a detailed category version is also
included.

2) Sufficient Quantity of Each Category: We try to enrich
the data for each vehicle type, so as to train the algo-
rithms to detect different types of vehicles.

3) Varied Scenes and Weather Conditions: Our dataset
includes many complex scenes, such as those with dense
vehicles and those under shadows. At the same time,
the backgrounds of our dataset are as comprehensive as
possible and include towns, cities, forests, lakes, and so
on, which greatly enriches its diversity. Images under
different weather conditions, such as rainy or foggy
weather, are included as well.

III. PREPARATION

A. Images’ Collection

Nowadays, most remote sensing images are collected by
aircraft or remote sensing satellites. Our team relied on drones,
helicopters, and other aerial photography equipment to collect
and record data over a long period and, finally, compiled a
large aerial dataset.

In order to ensure the legitimacy of the data, all data are
collected in an allowable area. Moreover, in order to ensure
the geographic diversity of the data, after each flight, the
geographic coordinates of aerial images are recorded, and
the area will not be revisited anymore. Our data collection
task mostly focuses on areas surrounding Shenzhen City and
Harbin City in China.
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Fig. 2. Some vehicles from our database.

B. Category

After investigations, we found that most datasets select
the size as the classification criteria for vehicles and tend to
ignore other characteristics. Therefore, we chose not to adopt
such a single standard. We first classified those vehicles into
“large vehicles” and “small vehicles” (such as in DOTA [32]).
However, as shown in Fig. 1, we found out that vehicles
meant for completely different purposes had the same size.
Therefore, we decided to distinguish and classify vehicles
based on additional characteristics, such as color, contour, and
purpose.

Ultimately, our dataset contains 13 types of vehicles in daily
life, as shown in Fig. 2, which includes cars, vans, dump
trucks, agitator trucks, trailers, bulldozers, pickup, tankers,
excavators, buses, school buses, trucks, and cranes.

C. Scene Selection

When choosing scenes, we focused on conditions that are
challenging for existing algorithms and tested popular algo-
rithms, such as YOLO, Faster R-CNN, and Cascade R-CNN
on the existing datasets, such as DOTA and DIOR. We found
that those algorithms have poor performance in the following
scenarios: 1) a dense vehicle area; 2) inconsistent directions
of vehicles; 3) junction areas with different terrains; and 4)
objects blocked by trees or under the shadow of buildings or
covered by clouds and fog.

The areas in which our team collected data from lie
approximately 22.32◦N, 114.05◦E and 44.04◦N, 125.42◦E,

Fig. 3. Weather and background.

respectively. The area ranges from the coastline to the main-
land. The climate and topography of those locations are
diverse, which satisfies our requirement for a variety of scenes.
In addition, to ensure our dataset contained highly dense
vehicle scenes, we focused on collecting images of parking
lots, arterial roads, and viaducts because there is a higher
probability of dense scenes in these places.

D. Weather Selection

Regarding the weather status of the dataset, our team
tried to enrich it by including various weather types in the
dataset, as shown in Fig. 3. The fog is classified in this
dataset according to the degree of ambiguity. The dark channel
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Fig. 4. Results of the horizontal bounding box.

theory [52] is used to calculate the transmittance of image
models as described in the following equations:

J Dark(x) = min
y∈�(x)

�
min

c∈r,g,b
J c(y)

�
(1)

J Dark(x) → 0 (2)

I c(x) = J c(x)t (x) + Ac(1 − t (x)) (3)

t̂ = 1 − min
y∈�(x)

�
min

c

I c(y)

Ac

�
. (4)

J Dark is the dark channel of the image and J c is the color
channel. Ac is the global atmospheric light, which can be
considered as a constant. We can deduce transmittance t̂ from
(4) and utilize it as a criterion to divide images into four levels
of fog: sunny, mist, fog, dense fog, and the four levels are
marked as 0, 1, 2, and 3, as shown in the following equation:

rank =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0.75 < t̂(x) < 1

1, 0.5 < t̂(x) < 0.75

2, 0.25 < t̂(x) < 0.5

3, 0 < t̂(x) < 0.25.

(5)

E. Annotation Method

Nowadays, there are mainly two annotation methods: HBB
and OBB. To evaluate the pros and cons of these two methods,
YOLOv3 and Faster R-CNN with FPN were run on our dataset
and several others, such as DOTA and DIOR. Based on the
results shown in Fig. 4, we took note of the following issues.

1) At places such as parking lots and highways, the density
of vehicles is generally high, and the directions are also
much inconsistent. Therefore, applying HBBs will result
in the loss of pixels for the target and the redundancy
of background pixels.

2) The HBB is especially unsuitable to annotate targets
with a large aspect ratio.

Consequently, OBBs were adopted to annotate the vehicles,
as they can accurately capture the boundary of objects by
quadrilateral area coordinates. The four-point coordinates are
used to represent the vertices of the bounding box in the image.
As shown in Fig. 5, these vertices are arranged in a clockwise
direction, the first vertex is emphasized and named “red_point”
in the annotation files, and it represents the front left corner of
the vehicle. For convenience, we published the two types of

Fig. 5. Annotation demo.

Fig. 6. Comparison of the instance number of vehicles.

annotation formats on Github: one is in XML format contains
information about classification labels, center point, height,
width, and rotation angle; the other is in TXT format with
classification labels and four points’ coordinates. In addition,
considering that some vehicles might be tough to annotate due
to occlusion or blur of images, a flag (named “Difficult”) is
used to indicate that difficulty. We will take advantage of this
feature in our future research on hard-to-detect targets.

IV. PROPERTIES

A. Basic

Our dataset contains 1196 pictures, 13 categories, and a
total of 541 751 instances. In Fig. 6, it can be seen that it far
exceeds the sum of vehicle instances in other existing remote
sensing datasets. The resolution of our dataset is about 0.12 m,
and the original size of the images is 5280 * 3956 pixels. It is
also larger than the size of mainstream remote sensing datasets.
In order to keep information of this large number of instances,
we did not crop the images when annotating.

B. Various Orientations of Vehicles

Since our dataset chooses to apply OBBs, the distribution of
the directions of objects needs to be taken into consideration.
We summarized the angles of vehicles in the dataset and
visualized them through a histogram. As shown in Fig. 7,
there are denser distributions at 0◦ (360◦), 90◦, 180◦, and 270◦.
This is a normal phenomenon since most streets are aligned
east–west or north–south. However, in general, the angles of
vehicles in our dataset are still distributed evenly.

C. Various Categories of Vehicles

As shown in Table II, most existing datasets classify vehi-
cles according to size, such as DOTA (divides vehicles into
“large vehicles” and “small vehicles”), or as only one category,
such as DIOR.

However, if the intelligent transportation service is used
for the purpose of scientific research, it is evident that the
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Fig. 7. Distribution of orientations.

Fig. 8. Distribution of the vehicle type.

TABLE II

COMPARISON OF TOTAL VEHICLE CATEGORIES

characteristic information of many vehicles is inappropriate if
the size is adopted as the only criterion. For example, school
buses and trucks are similar in size, but, because they actually
perform different tasks, there are certain differences in both
their outline and color.

Therefore, in accordance with the application of vehicles in
real life, our dataset is divided into 14 categories. Since there
are many similar types of vehicles in the dataset, in order
to accurately annotate the types of vehicles in the figure,
each type of car is strictly defined according to its unique
characteristics. At the same time, we have performed multiple
calibrations. For example, the tanker has an oval oil tank; the

TABLE III

COMPARISON OF TOTAL VEHICLE CATEGORIES

Fig. 9. Average pixel size of 13 different vehicles.

trailer truck has a very long square compartment; compared
with the front of the vehicle, the van is a square and complete
body; the truck is composed of the front and the compartment;
and the school bus is in yellow. We divide them according
to the most obvious difference. Although there may be some
wrong classifications, we have reduced the error to a very
small amount.

D. Statistics of Targets’ Area

The pixel area is used as a measurement method of the
size of the instance, and the area of the vehicle ranges
from 600 to 6000 pixels. Based on the size of the instance
area, the characteristics of each category, and the number of
instances in each category, targets in the dataset are divided
into four categories: cars, trucks, construction, and the public
to improve the detection accuracy. For details, see Section V.
From Figs. 9 and 10, the area range of targets of different
sizes can be obtained. As shown in pictures, except for the
Crane category, which has a larger area, other categories have
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Fig. 10. Number of instances.

relatively small areas. Within the range of 600–3000, the area
is relatively balanced, and the aspect ratio is maintained at
relatively stable figures. After classification, the area of the
four categories was in the range of 600–2500, and the aspect
ratio was more stable, which is more conducive for the training
of vehicle detection algorithms.

V. EVALUATIONS

A. Evaluation Prototypes

OBB-based prediction is more difficult because the most
advanced detection methods are not designed for oriented
objects. Therefore, we will choose MMdetection for its accu-
racy and efficiency, and modify it to predict the OBB. The
image size of our dataset is too large to be directly input to
the CNN-based detector. Therefore, we crop the original image
into a series of 600*600 patches with a stride of 200. Note
that, during the cropping process, a complete object may be
cut into two parts. There will be incomplete instances on our
images. Thus, we set the area of the original object as A0, the
area of the remained part Pr , and as ar , and then calculate

Ur = ar/A0.

If Ur < 0.7, we delete the target; otherwise, we keep it the
same as the original annotation.

B. Different Illuminations

Some of the pictures in this dataset are imaging the same
area at different time periods, i.e., imaging the same area
under distinct illuminations. In Fig. 12, we can see that, under
different illuminations, insufficient illumination and shadows
influence the detection effect, leading to missed detection or
false detection.

C. Experimental Analysis

First, we conducted an experiment on extracting features
for all categories in the LOVD dataset, as shown in Fig. 11.
We analyzed all categories through the strategy of visualizing

the convolutional layer, and we summarized all small cate-
gories into four major categories: Car, Truck, Construction,
and Public. For the “Car” category, they only correspond
to objects with the label “Car.” This label has the largest
number of instances, and it includes SUVs and cars. Moreover,
its characteristics are quite different from those of all other
subcategories, so it is taken as a separate category. As for
“Truck,” by observing from the categories of Dump, Truck,
Trailer Truck, and Agitator Truck in Fig. 11, it can be found
that these four subcategories have similar characteristics. Their
vehicle bodies are composed of two parts: front and carriage,
which can also be captured from the feature images. Thus,
considering their application scene and contour feature, these
four categories can be classified as one big category “Truck”
for identification. For “Construction” vehicles, they can further
be classified as Excavator, Tanker, Bulldozer, and Crane,
as these are the types of vehicles, which mostly appear in
construction sites, so they can be classified as one major
category. The remaining four categories of Bus, School Bus,
Pickup, and Van are classified as “Public” because most of
these types of vehicles are used for public transportation and
generally can carry six or more passengers.

For the analysis of algorithm performance, we adopt mAP
and F1-score as the performance metric, which are the two
most common methods. We evaluate those state-of-art algo-
rithms with both four classification labels and 13 classification
labels. Results are shown in Table VI. According to the results,
we further analyze the performance of each algorithm.

1) YOLOv3: The YOLOv3 algorithm [53] applies Darknet
and a large number of residual modules. Convolutional lay-
ers are used for downsampling. In order to achieve better
detection performance on small objects, YOLOv3 adopts a
fusion of multiple scale feature maps. Although YOLOv3’s
training speed and running time are better than those of other
methods, its detection accuracy is not as good as that of the
existing R3det method; especially, for the detection of BC3
(Construction), as shown in Table VI and VII, the YOLO
algorithm has the lowest detection accuracy. YOLOv3 is based
on an anchor box and needs to cluster the target labels in
advance. Due to the particularity of the OBB, there is no
specific way to use the angle parameter when setting the
anchor box. The model can be trained with labels of four point
coordinates. The center point can also be used for training
with the height and angle information. In addition, there is
no standard for calculating the IOU for the OBB, so the
application of YOLOv3 in the case of the OBB does not have
the same advantages as the HBB. Also, in order to evaluate the
detection performance and classification performance of the
algorithm on the dataset separately, we first treat all targets as
one category for detection and then calculate the classification
rate of YOLOv3 among the detected targets. As shown in
Table IV, YOLOv3 has a higher score in the classification
of targets in LOVD, which shows the goodness of the target
classification features in LOVD.

2) Faster R-CNN With FPN: Small objects have less pixel
information and so are easily lost during the downsampling
process. In order to deal with this type of detection problem
with obvious object size differences, the classic method is to
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Fig. 11. Feature classification.

Fig. 12. Test results in the same place under different illuminations. (a) In
dim conditions. (b) In light conditions.

TABLE IV

DETECTION AND CLASSIFICATION RESULTS

use image pyramids to enhance multiscale changes, but this
will lead to much more calculations. Therefore, FPN adopted
an FPN structure, which can handle the problem of multiscale
changes in object detection with a very small amount of
calculation. As shown in Tables VI and VII, it can be observed
that Faster RCNN with FPN is much worse than YOLO in
detecting small vehicles in group BC1. However, it is much
better than YOLO when it comes to detecting transportation
vehicles with large lengths and widths or more complicated

shapes in groups BC2 and BC3. The analysis may be due to
excessive downsampling results in the loss of the target feature
information with different rules for various vehicle categories.
FPN adopts prediction in each layer; its efficiency is much
worse than that of YOLO [54].

3) R3det: R3det [50] improves the problem of dense distri-
bution and extremely unbalanced categories in oriented target
detection. The oriented anchor avoids noisy areas by adding
angle parameters and has better detection performance in
dense scenes. However, the number of anchors increases expo-
nentially, reducing the efficiency of the model. Researchers
use the method of superimposing feature maps to obtain
new features through two-way convolution to improve the
detection effect. We found that, although this greatly improves
the detection performance of the OBB, the training speed
is several times slower than that of the HBB. Thus, how
to improve the efficiency of OBB training is still an urgent
problem.

4) CSl-FPN: From the analysis of experimental data, such
as CSL-FPN-based, compared with other mainstream net-
works, the detector based on the CSL can learn the direction
information of the target very well. However, in the case of
more vehicle rotation angles in the test image, its performance
is still not that good, such as group BC3 in Table VI.

5) SCRDet and SCRDet++: After experiments, we found
that SCRDET++ is very good at detecting small and cluttered
objects. The instance-level denoising module for suppressing
instance noise in its structure has significantly improved the
detection performance of various types of vehicles.
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TABLE V

CLASSIFICATION

TABLE VI

RESULTS OF FOUR CLASSES

TABLE VII

MAP RESULTS OF 13 CLASSES

Fig. 13. Universality test of LOVD and DOTA.

Overall, compared with performance in DOTA’s SV and
LV [32], most of the algorithms have improved vehi-
cle detection results to varying degrees, and the overall
accuracy rate has increased by 3.8%. At the same time,
in terms of recall rate, we use F1-measure for further
experiments. In fact, SCRDET (based on FPN) and R3DET
have the best performance, especially for target detection in
areas where the direction of the dense and dense cars is
changeable.

Fig. 14. Future work.

D. Universality Test

We also perform universality experiments to verify whether
our dataset will improve the data-driven algorithms. We choose
the DOTA dataset for universality testing because, compared
with other aerial object detection datasets, DOTA vehicles’
data are relatively abundant. Our strategy is to first adopt R3det
for this experiment, then train the R3det algorithm on the
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DOTA and LOVD datasets, respectively, and randomly select
100 images from other datasets for testing. In the case where
the input picture and other settings are the same, the result is
shown in Fig. 13. Although the R3det algorithm trained on
the DOTA dataset works very well, compared with the LOVD
dataset, there will still be missed targets. We believe that this is
because the LOVD dataset has more comprehensive categories
and rich tags for various types of vehicles.

VI. CONCLUSION AND FUTURE WORK

This article proposes a large-scale, publicly available vehicle
dataset that is much larger than any existing vehicle dataset
in the remote sensing field. Different from the normal vehicle
remote sensing dataset, the proposed LOVD dataset applies
OBBs to annotate targets and is more excellent on the diversity
of scenarios, weather, and vehicle category. Moreover, evalua-
tion of the performance for those modified mainstream detec-
tion algorithms and other bounding-box-specific algorithms is
also done on LOVD, and the experimental results can be a
useful performance benchmark for future research.

Based on the proposed remote sensing dataset, we will
continue to conduct research on vehicle detection algorithms
for remote sensing images. Although existing algorithms for
detecting OBBs in remote sensing images have been continu-
ously proposed, there has not yet been an algorithm that can
truly achieve excellent detection results. As shown in Fig. 14,
we still find challenges in the following areas.

1) Detection on dense scenes. When we conducted a uni-
versal test, we found that, in low-resolution remote sens-
ing images, vehicles in dense scenes are more difficult
to detect.

2) Detection of targets near the edge of the picture and
occluded targets. Although the R3det alleviated some of
the problems, it still did not achieve relatively excellent
results. If most of the features for a vehicle are occluded,
the detection performance will be far from satisfactory.

3) Detection of targets in dense fog and shadow. In dense
foggy weather, vehicle target features are almost com-
pletely occluded, making it difficult to identify such
targets.

4) Extraction and identification of various parts of vehicles.
The separate parts of the vehicle are also very important
for detection, which can make the algorithm learn the
characteristics of the target better.

In view of the above, we are going to seek to update the
proposed dataset, add more instances for those categories with
relatively fewer samples, and optimize the application of the
dataset in the multicategory vehicle classification algorithm
in the future. We also hope that we will receive valuable
suggestions and feedback for our proposed dataset.
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